Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 15: 7805-7823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116502

RESUMO

PURPOSE: This study aimed to quantify synergetic effects induced by bismuth oxide nanoparticles (BiONPs), cisplatin (Cis) and baicalein-rich fraction (BRF) natural-based agent on the reactive oxygen species (ROS) generation and radiosensitization effects under irradiation of clinical radiotherapy beams of photon, electron and HDR-brachytherapy. The combined therapeutic responses of each compound and clinical radiotherapy beam were evaluated on breast cancer and normal fibroblast cell line. METHODS: In this study, individual BiONPs, Cis, and BRF, as well as combinations of BiONPs-Cis (BC), BiONPs-BRF (BB) and BiONPs-Cis-BRF (BCB) were treated to the cells before irradiation using HDR brachytherapy with 0.38 MeV iridium-192 source, 6 MV photon beam and 6 MeV electron beam. The individual or synergetic effects from the application of the treatment components during the radiotherapy were elucidated by quantifying the ROS generation and radiosensitization effects on MCF-7 and MDA-MB-231 breast cancer cell lines as well as NIH/3T3 normal cell line. RESULTS: The ROS generated in the presence of Cis stimulated the most substantial amount of ROS compared to the BiONPs and BRF. Meanwhile, the combination of the components had induced the higher ROS levels for photon beam than the brachytherapy and electron beam. The highest ROS enhancement relative to the control is attributable to the presence of BC combination in MDA-MB-231 cells, in comparison to the BB and BCB combinations. The radiosensitization effects which were quantified using the sensitization enhancement ratio (SER) indicate the highest value by BC in MCF-7 cells, followed by BCB and BB treatment. The radiosensitization effects are found to be more prominent for brachytherapy in comparison to photon and electron beam. CONCLUSION: The BiONPs, Cis and BRF are the potential radiosensitizers that could improve the efficiency of radiotherapy to eradicate the cancer cells. The combination of these potent radiosensitizers might produce multiple effects when applied in radiotherapy. The BC combination is found to have the highest SER, followed by the BCB combination. This study is also the first to investigate the effect of BRF in combination with BiONPs (BB) and BC (BCB) treatments.


Assuntos
Bismuto/química , Bismuto/farmacologia , Braquiterapia , Cisplatino/farmacologia , Flavanonas/farmacologia , Nanopartículas , Espécies Reativas de Oxigênio/metabolismo , Animais , Sinergismo Farmacológico , Feminino , Humanos , Radioisótopos de Irídio/uso terapêutico , Células MCF-7 , Camundongos , Células NIH 3T3 , Radiossensibilizantes/farmacologia
2.
Int J Nanomedicine ; 14: 9941-9954, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31908451

RESUMO

PURPOSE: The aim of this study was to investigate the potential of the synergetic triple therapeutic combination encompassing bismuth oxide nanoparticles (BiONPs), cisplatin (Cis), and high dose rate (HDR) brachytherapy with Ir-192 source in breast cancer and normal fibroblast cell line. METHODS: In vitro models of breast cancer cell lines (MCF-7, MDA-MB-231) and normal fibroblast cell line (NIH/3T3) were employed. Cellular localization and cytotoxicity studies were conducted prior to inspection on the radiosensitization effects and generation of reactive oxygen species (ROS) on three proposed radiosensitizers: BiONPs, Cis, and BiONPs-Cis combination (BC). The optimal, non-cytotoxic concentration of BiONPs (0.5 mM) and the 25% inhibitory concentration of Cis (1.30 µM) were applied. The radiosensitization effects were evaluated by using a 0.38 MeV Iridium-192 HDR brachytherapy source over a prescribed dose range of 0 Gy to 4 Gy. RESULTS: The cellular localization of BiONPs was visualized by light microscopy and accumulation of the BiONPs within the vicinity of the nuclear membrane was observed. Quantification of the sensitization enhancement ratio extrapolated from the survival curves indicates radiosensitization effects for MCF-7 and MDA-MB-231 when treated with BiONPs, Cis, and BC. However, NIH/3T3 cells exhibited contradictive behavior as it only reacted towards the BC combination. Nonetheless, the MCF-7 cell line loaded with BC shows the highest SER of 4.29. ROS production analysis, on the other hand, shows that Cis and BC radiosensitizers generated the highest free radicals in comparison to BiONPs alone. CONCLUSION: A BiONPs-Cis combination was unveiled as a novel approach that offers promising radiosensitization enhancement that will increase the efficiency of tumor control while preserving the normal tissue at a reduced dose. This data is the first precedent to prove the synergetic implication of BiONPs, Cis, and HDR brachytherapy that will be beneficial for future chemoradiotherapy strategies in cancer care.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bismuto/farmacologia , Braquiterapia/métodos , Neoplasias da Mama/radioterapia , Cisplatino/farmacologia , Radiossensibilizantes/farmacologia , Animais , Bismuto/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Feminino , Humanos , Radioisótopos de Irídio , Camundongos , Células NIH 3T3 , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Radiossensibilizantes/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
3.
Heliyon ; 4(10): e00864, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30364574

RESUMO

Proper dosimetry settings are crucial in radiotherapy to ensure accurate radiation dose delivery. This work evaluated scanning parameters as affecting factors in reading the dose-response of EBT2 and EBT3 radiochromic films (RCFs) irradiated with clinical photon and electron beams. The RCFs were digitised using Epson® Expression® 10000XL flatbed scanner and image analyses of net optical density (netOD) were conducted using five scanning parameters i.e. film type, resolution, image bit depth, colour to grayscale transformation and image inversion. The results showed that increasing spatial resolution and deepening colour depth did not improve film sensitivity, while grayscale scanning caused sensitivity reduction below than that detected in the Red-channel. It is also evident that invert and colour negative film type selection negated netOD values, hence unsuitable for scanning RCFs. In conclusion, choosing appropriate scanning parameters are important to maintain preciseness and reproducibility in films dosimetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...